
How to
“Think Cloud”

Architectural Design

Patterns for Cloud Computing

Steve Riley Sr. Technical Program Manager steriley@amazon.com

Cloud Best Practices Whitepaper
Prescriptive guidance to Cloud Architects

http://media.amazonwebservices.com/
AWS_Cloud_Best_Practices.pdf

The “Living and Evolving” Cloud The “Living and Evolving” Cloud
AWS services and basic terminology

Most Applications Need:

1. Compute

2. Storage

3. Messaging

4. Payment

5. Distribution

6. Scale

7. Analytics

Abstract
Resources

Focus on your needs, not on hardware specs. As your
needs change, so should your resources.

On-Demand
Provisioning

Ask for what you need, exactly when you need it. Get rid
of it when you don’t need

Scalability in
minutes

Scale out or in depending on usage needs.

Pay per
consumption

No long-term commitments.
Pay only for what you use.

Efficiency of
Experts

Utilize the skills, knowledge and resources of experts.

Cloud Computing Attributes
What makes the Cloud so attractive

Scalability

Characteristics of Truly Scalable Service

Build Scalable Architecture on AWS

A scalable architecture is critical to take advantage of a scalable
infrastructure

Increasing resources results in a proportional increase in
performance

A scalable service is capable of handling heterogeneity

A scalable service is operationally efficient

A scalable service is resilient

A scalable service becomes more cost effective when it
grows

Cloud Architecture Lessons

1. Design for failure and nothing fails
2. Loose coupling sets you free
3. Implement “Elasticity”
4. Build Security in every layer
5. Don't fear constraints
6. Think Parallel
7. Leverage different storage options

using Amazon Web Services

1. Design for Failure

"Everything fails, all the time"
Werner Vogels, CTO Amazon.com

and nothing will really fail

Avoid single points of failure
Assume everything fails, and design backwards

Goal: Applications should continue to function even if the
underlying physical hardware fails or is removed or replaced.

Design for Failure with AWS
Tools to make your life easier

Use Elastic IP addresses for consistent and re-mappable routes
Use multiple Amazon EC2 Availability Zones (AZs)
Create multiple database slaves across AZs
Use real-time monitoring (Amazon CloudWatch)
Use Amazon Elastic Block Store (EBS) for persistent file systems

EC2 Instance A EC2 Instance B

YourWebsite.com

LOG
Volume

DATA
Volume

EC2 Instance A

YourWebTwoDotZeroName.com

LOG
Volume

DATA
Volume

EC2 Instance B

Amazon S3

A
va

ila
b

ili
ty

 Z
o

n
e

1

A
vailab

ility Zo
n

e 2

Staging
instance

Production
instance

www.YourWebsite.com

Elastic IP
183.12.43.11

Staging.YourWebsite.com

Dynamic IP
172.0.1.13

2. Build Loosely Coupled Systems
The looser they're coupled, the bigger they scale

Independent components
Design everything as a Black Box
De-coupling for Hybrid models
Load-balance clusters

Controller A Controller B Controller C

Controller A Controller B Controller C

Q Q Q

Tight Coupling

Loose Coupling
using Queues

Use Amazon SQS as Buffers

3. Implement Elasticity

Don’t assume health or fixed location of components
Use designs that are resilient to reboot and re-launch
Bootstrap your instances: Instances on boot will ask a
question “Who am I & what is my role?”
Enable dynamic configuration

Elasticity is fundamental property of the Cloud

Use Auto-scaling (Free)
Use Elastic Load Balancing on multiple layers
Use configurations in SimpleDB to bootstrap instance

Managed Development
Environment

Managed
Development
Environment

AWS Cloud

SMB IT Dept ISV Startup

3. Implement Elasticity
Automate everything

Automated
Deployment
Environment

AWS Cloud

SaaS Paid
AMI

Cloud-powered
Software Lifecycle

management

AWS Cloud

Web 2.0 Marketing
Campaign

Dev/Test Apps
Prod

Windows

.NET

Your Code

Log4Net

Spring.NET

nHibernate

ASP.NET MVC

ASP.NET

IIS

Linux

JEE

Your Code

Log4J

Spring

Hibernate

Struts

Tomcat

Apache

Centos

Ruby Runtime

Your Code

logger

RubyGems

memcached

Rails

Mongrel

Apache

OS

Framework

Your Code

Libraries

Packages

DB Caching

MVC

App Server

Web Server

Java Stack .NET Stack RoR stack

Standardized Technology Stacks
3. Implement Elasticity

Standardized Application Stacks

3 Approaches to design MDE

Inventory of fully baked AMIs
(Frozen Pizza Model)

“Golden AMIs” with fetch on boot
(Take N’ Bake Papa Murphy Model)

AMIs with JeOS and “Chef” Agent
(Made to Order Pizza Model)

More Control
Easier to maintain

Easier to Setup

3. Implement Elasticity
3 approaches to designing your AMIs

Windows

.NET

Your Code

Log4Net

Spring.NET

nHibernate

ASP.NET MVC

ASP.NET

IIS

.NET Stack

Windows

.NET

Your Code

Log4Net

Spring.NET

nHibernate

ASP.NET MVC

IIS

IIS

.NET AMI

Amazon EC2

Windows

.NET

Your Code

Log4Net

Spring.NET

nHibernate

ASP.NET MVC

IIS

IIS

Windows

.NET

Your Code

Log4Net

Spring.NET

nHibernate

ASP.NET MVC

IIS

IIS

Windows

.NET

Your Code

Log4Net

Spring.NET

nHibernate

ASP.NET MVC

IIS

IIS

Windows

.NET

Your Code

Log4Net

Spring.NET

nHibernate

ASP.NET MVC

IIS

IIS

3 Approaches to design MDE
3. Implement Elasticity

1. Frozen Pizza Model

Source Control

Amazon S3

Windows

.NET

Your Code

Log4Net

Spring.NET

nHibernate

ASP.NET MVC

IIS

IIS

.NET Stack

Your Code

Log4Net

Spring.NET

nHibernate

ASP.NET MVC

Windows

.NET

IIS

IIS

.NET AMI

Amazon EC2

“Golden AMIs” with fetch on boot

Windo
ws

.NET

IIS

IIS

Windo
ws

.NET

IIS

IIS

Windo
ws

.NET

IIS

IIS

Windo
ws

.NET

IIS

IIS

Fetch on boot time

3 Approaches to design MDE
3. Implement Elasticity

2. Papa Murphy Pizza Model

Source Control

Amazon S3

RoR Stack

Your Code

Log4Net

Spring.NET

nHibernate

ASP.NET MVC
.NET IIS

IIS

AMI (JeOS)

Amazon EC2

Chef Server

Windows

CHEF Agent

Windows

CHEF
Agent

Centos

Ruby Runtime

Your Code

logger

RubyGems

memcached

Rails

Mongrel

Apache

Cookbooks
Recipes

3 Approaches to design MDE
3. Implement Elasticity

3. Made to Order Pizza Model

4. Build Security in every layer

With cloud, you lose a little bit of
physical control but not your
ownership

Design with Security in mind

Create distinct Security Groups for each Amazon EC2 cluster
Use group-based rules for controlling access between layers
Restrict external access to specific IP ranges
Encrypt data “at-rest” in Amazon S3
Encrypt data “in-transit” (SSL)
Consider encrypted file systems in EC2 for sensitive data
Rotate your AWS Credentials, Pass in as arguments encrypted
Use MultiFactor Authentication

Web tier Application tier Database tier

HTTP/HTTPS
from Internet

SSH/RDP management
from corpnet

SSH/RDP management
from corpnet, vendor

ec2-authorize WebSG -P tcp -p 80 -s 0.0.0.0/0
ec2-authorize WebSG -P tcp -p 443 -s 0.0.0.0/0

ec2-authorize AppSG -P tcp -p AppPort -o WebSG
ec2-authorize AppSG -P tcp -p 22|3389 -s CorpNet

ec2-authorize DBSG -P tcp -p DBPort -o AppSG
ec2-authorize DBSG -P tcp -p 22|3389 -s CorpNet
ec2-authorize DBSG -P tcp -p 22|3389 -s Vendor

Traditional security model

Control
Secure Not secure

Ownership
Mine Not mine

Location
Here Not here

Layers of trust

My
hardware
(root)

My
software

My
people

Perimeters separate trusted (owned, local)
from untrusted (other, remote)

The model is breaking

Control
Secure Not secure

Ownership
Mine Not mine

Location
Here Not here

Seriously?

The model is breaking

Control
Secure Not secure

Ownership
Mine Not mine

Location
Here Not here

Seriously?

New security model

Control

Encryption
and

signatures

Service
level

agreements

Auditable
security

standards

Ownership vs. control

Ownership
not required

To maintain
control

LAN/WAN

• Pipe

• Data

VPN

• Data

On-premise

• Compute

• Storage

• Data

Cloud

• Data

5. Don't fear constraints

More RAM? Distribute load across machines
Shared distributed cache

Re-think architectural constraints

Better IOPS on my database?
Multiple read-only / sharding / DB
clustering

Your hardware failed or messed up config?

simply throw it away and switch to new
hardware with no additional cost

Performance
Caching at different levels (Page, Render, DB)

Hardware Config
does not match?
Implement Elasticity

6. Think Parallel

Experiment different architectures in parallel
Multi-threading and Concurrent requests to cloud services
Run parallel MapReduce Jobs
Use Elastic Load Balancing to distribute load across multiple servers
Decompose a Job into its simplest form – and with “shared nothing”

The beauty of the cloud shines when you combine
elasticity and parallelization

Serial and Sequential is now history

6. Leverage many storage options

Amazon S3: large static objects
Amazon Cloudfront: content distribution
Amazon SimpleDB: simple data indexing/querying
Amazon EC2 local disc drive : transient data
Amazon EBS: persistent storage for any RDBMS + Snapshots on S3
Amazon RDS: RDBMS service - Automated and Managed MySQL

One size DOES NOT fit all

6. Leverage many storage options
Which storage option to use when?

Amazon S3 +
CF

Amazon EC2
Ephemeral
Store

Amazon EBS Amazon
SimpleDB

Amazon RDS

Ideal for Storing Large
write-once,
read-many
types of
objects, Static
Content
Distribution

Storing non-
persistent
transient
updates

Off-instance
persistent
storage for any
kind of data,

Querying light-
weight attribute
data

Storing and
querying
structured
Relational and
referential
Data

Ideal examples Media files,
audio, video,
images,
Backups,
archives,
versioning

Config Data,
scratch files,
TempDB

Clusters, boot
data, Log or
data of
commercial
RDBMS like
Oracle, DB2

Querying,
Mapping,
tagging, click-
stream logs,
metadata,
shared-state
management,
indexing

Complex
transactional
systems,
inventory
management
and order
fulfillment
systems

Not
recommended
for

Querying,
Searching

Storing
Database logs
or backups,
customer data

Relational (joins)
query

Not
recommended
examples

Database, File
Systems

Sensitive data Content
Distribution

OLTP, DW cube
rollups

Simple
lookups

Cloud Architecture Lessons
Best Practices

1. Design for failure and nothing fails
2. Loose coupling sets you free
3. Implement Elasticity
4. Build Security in every layer
5. Don't fear constraints
6. Think Parallel
7. Leverage many storage options

Migrating your Web Application

A typical Web App needs:

Step by Step towards AWS

Compute Power
Storage capacity
Content Distribution
Database storage
Messaging
Load balancing
Monitoring

With AWS:

Amazon EC2
Amazon S3

Amazon CloudFront
Amazon EBS
Amazon SQS
Amazon EC2

Amazon CloudWatch

Amazon Web Services tools

Web : AWS Management Console
IDE : AWS Toolkit for Eclipse
AWS SDK: .NET SDK, Java SDK
Tools : 3rd Party tools eg. CA
Firefox Plugins :
ElasticFox, S3Fox, SDB Tool
Several libraries: boto, cloudfusion

Things you need

Dash
board

Report

CRM

Search

DB

logs

Service LDAP

Auth Web

Engine OLAP

ERP

Identify the right candidate
Assessment

List all your IT assets
Whiteboard your IT Assets
Identify upward and downward
dependencies

CRM

Search

DB

Identify the right candidate for the cloud

Dash
board

Report

CRM

Search

DB

logs

Service LDAP

Auth Web

Engine OLAP

ERP

Pick one application with lower dependencies to start with

Identify the right candidate

Search for under-utilized IT assets

Applications that has immediate
business need to scale

Applications that are running out of
capacity

Low-hanging fruits (Examples):

Web Applications

Batch Processing systems

Build/QA/Test systems

Content Management Systems

Digital Asset Management Systems

P h o t o : G r a n d C a n y o n H o p i P o i n t S u n S e t

Conclusions

Most Important Lesson From Our Customers:
Start small with a well-defined proof of concept
Experiment with different architectures; Keep one, throw away others
Once one application is launched others will follow…

Traditional IT roles are changing

You just lost
customers

Predicting Infrastructure Needs
Infrastructure
Cost $

time

Large
Capital

Expenditure

Opportunity
Cost

Wastage

Predicted
Demand

Traditional
Hardware

Actual
Demand

On-demand
Computing

The day is not too far when applications will
cease to be aware of physical hardware. Much
like plugging in a microwave in order to power
it doesn’t require any knowledge of electricity,
one should be able to plug in an application to
the cloud in order to receive the power it
needs to run, just like a utility. As an architect,
you will manage abstract compute, storage
and network resources instead of physical
servers. Applications will continue to function
even if the underlying physical hardware fails
or is removed or replaced. Applications will
adapt themselves to fluctuating demand
patterns by deploying resources
instantaneously and automatically, thereby
achieving highest utilization levels at all times.
Scalability, Security, High availability, Fault-
tolerance, Testability and Elasticity will be
configurable properties of the application
architecture and will be an automated and
intrinsic part of the platform on which they are
built.

The day is not too far….

Scalability, Security, High availability, Fault-tolerance, Testability and
Elasticity will be configurable properties of the application
architecture and will be an automated and intrinsic part of the
platform on which they are built.

http://www.flickr.com/photos/sugu/974272658/

steriley@amazon.com
@steveriley @awscloud

http://stvrly.wordpress.com
Presentation ideas and template from @simon and @jinman

Thank you!

